

Naval Air Station Corpus Christi 2023 Drinking Water Consumer Confidence Report

NAVAL AIR STATION CORPUS CHRISTI - PWS ID# TX1780017

Dear Water Customer,

Naval Air Station Corpus Christi (NAS-CC) is pleased to present our 2023 Annual Water Quality Report. This report is in accordance with the Environmental Protection Agency (EPA) National Primary Drinking Water Regulations, 40 CFR Part 141 Subpart O. This regulation requires all public water systems to provide the public with annual details of our water resources and water quality.

Certified and trained professionals proactively monitor and test the water throughout our distribution system. This ensures our water meets or exceeds federal and state public water system requirements and is safe to drink.

If you have any questions about the contents of this report, contact Public Works Environmental at 361-961-5353.

NAVAL AIR STATION CORPUS CHRISTI - PWS ID# TX1780017

Annual Water Quality Report for the period of January 1 to December 31, 2023.

This Consumer Confidence Report (CCR) is intended to provide you with important information about your drinking water and the efforts made by NAS-CC and the City of Corpus Christi to provide safe drinking water.

For more information regarding this report contact:

Name: Biji Pandisseril

Title: IEPD

Phone: 361-961-5353

Email:biji.a.pandisseril.civ@us.navy.mil

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (361) 961-5353.

Public Participation Opportunities:

City of Corpus Christi:

Corpus Christi's Mayor and City Council meet the second, third, and fourth Tuesday of each month. Information about public participation, public comment, and input can be found by visiting www.cctexas.com/ departments/mayor-and-city-council. NAS Corpus Christi:

None scheduled, Call 361-961-5353 for comments or questions.

NAVAL AIR STATION CORPUS CHRISTI - PWS ID# TX1780017

VULNERABLE POPULATIONS

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

LEAD IN DRINKING WATER

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

NAVAL AIR STATION CORPUS CHRISTI - PWS ID# TX1780017

LEAD AND COPPER SAMPLING OF DRINKING WATER

The August 2023 sampling results from the testing of drinking water faucets for lead and copper did not exceed the EPA action levels. Public notices were posted at each sampling location within 30 days of receiving sample results.

Twenty (20) samples were taken during the August 2023 event. All results have been forwarded to the TCEQ per the Lead and Copper Drinking Water Rule.

NAS-CC was approved by Texas Commission on Environmental Quality (TCEQ) to sample lead and copper at a reduced frequency from annually to once every three year. Next sampling event will be conducted June 1 - September 30, 2026. NAS-CC was granted this reduction for NOT exceeding EPA action levels for lead and copper during the previous three years of annual monitoring.

NAVAL AIR STATION CORPUS CHRISTI - PWS ID# TX1780017

NAS CORPUS CHRISTI DRINKING WATER SOURCE

NAS CC's drinking water system is a Purchased Surface Water System. NAS CC purchases drinking water from the City of Corpus Christi. The City of Corpus Christi's 2023 CCR data is appended to this CCR. The Texas Commission on Environmental Quality (TCEQ) regulates water quality.

TCEQ Source Water Name: SWP I/C FROM CORPUS CHRISTI - CC FROM TX1780003 CITY OF CORPUS CHRISTI

Type of Water: Surface Water Location: Nueces County

INFORMATION ABOUT SOURCE WATER ASSESSMENTS

The TCEQ has completed a Source Water Assessment for all drinking water systems that own their sources. The report describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system, contact Biji Pandisseril by phone at 361-961-5353, or by email at biji.a.pandisseril.civ@us.navy.mil.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://www.tceq.texas.gov/gis/swaview.

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: http://dww2.tceq.texas.gov/DWW/.

NAVAL AIR STATION CORPUS CHRISTI - PWS ID# TX1780017

SOURCES OF DRINKING WATER

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the Public Works Environmental Office.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

NAVAL AIR STATION CORPUS CHRISTI - PWS ID# TX1780017

DEFINITIONS

The following tables contain scientific terms and measures, some of which may require explanation.

Regulatory compliance with some Maximum Contaminant Levels (MCLs) are based on running annual average of monthly samples.
The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.
The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
million fibers per liter (a measure of asbestos)
not applicable.
millirems per year (a measure of radiation absorbed by the body)
nephelometric turbidity units (a measure of turbidity)
picocuries per liter (a measure of radioactivity)
micrograms per liter (ug/L) or parts per billion - or one ounce in 7,350,000 gallons of water.
milligrams per liter (mg/L) or parts per million - or one ounce in 7,350 gallons of water.
A required process intended to reduce the level of a contaminant in drinking water.
parts per trillion, or nanograms per liter (ng/L)
parts per quadrillion, or picograms per liter (pg/L)

NAVAL AIR STATION CORPUS CHRISTI - PWS ID# TX1780017

REGULATED CONTAMINANTS DATA

Disinfectant Residual Table

	Collection Date	Average Level	Minimum Level	Maximum Level	Maximum Residual Disinfectant Level	Maximum Residual Disinfectant Level Goal	Unit of Measure	Violation (Y/N)	Likely Source of Contamination
Chloramine Residual	2023	2.2	1.0	4.0	4	4	ppm	N	Water additive used to control microbes.

Inorganic Contaminants

Contaminant	Collection Date	Highest Level Detected	Range of Levels Detected	Maximum Contaminant Level Goal	Maximum Contaminant Level	Unit of Measure	Violation (Y/N)	Likely Source of Contamination
Nitrate [measured as Nitrogen]	2023	0.28	0.28-0.28	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

NAVAL AIR STATION CORPUS CHRISTI - PWS ID# TX1780017

REGULATED CONTAMINANTS DATA, CONTINUED

Lead and Copper (1 year periodicity)

Contaminant	Date Sampled	Maximum Contaminant Level Goal	Action Level	90th Percentile	# Sites Over Action Level	Unit of Measure	Violation (Y/N)	Likely Source of Contamination
Copper	2023	1.3	1.3	0.096	O	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	2023	0	15	1.7	O	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.

Total Coliform

Contaminant	Year	Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or <i>E. coli</i> Maximum Contaminant Level	Violation (Y/N)	Likely Source of Contamination
Total Coliform Bacteria	2023	0	O	O	When a routine sample and a repeat sample are total coliform positive, and one is also coliform or <i>E. coli</i> positive.		Naturally present in the environment

Total coliform bacteria are used as indicators of microbial contamination of drinking water because testing for them is easy. While not disease-causing organisms themselves, they are often found in association with other microbes that are capable of causing disease. Coliform bacteria are hardier than many disease-causing organisms; therefore, their absence from water is a good indication that the water is microbiologically safe for human consumption.

NAVAL AIR STATION CORPUS CHRISTI - PWS ID# TX1780017

REGULATED CONTAMINANTS DATA, CONTINUED

Disinfection By-Products

Contaminant	Collection Date	Highest Level Detected	Averaged Range of Levels Detected	Maximum Contaminant Level Goal	Maximum Contaminant Level	Unit of Measure	Violation (Y/N)	Likely Source of Contamination
Haloacetic Acids (HAA5)	2023	14	0-19.7	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2023	43	32-61.1	No goal for the total	80	ppb	N	By-product of drinking water disinfection.

^{*} The value in the Highest Level or Average Detected column is the highest average of all sample results collected at a location over a year

Contaminant	Collection Date	Average Level	Minimum Level	Maximum Level	Unit of Measure	Likely Source of Contamination
Bromoform	2023	12.86	2.3	32.2	ppb	Byproduct of drinking water disinfection
Chloroform	2023	5.88	1.3	14.4	ppb	Byproduct of drinking water disinfection
Bromodichloromethane	2023	5.55	1.0	8.1	ppb	Byproduct of drinking water disinfection
Dibromochloromethane	2023	13.28	6.3	20.1	ppb	Byproduct of drinking water disinfection

Bromoform, chloroform, bromodichloromethane, and dibromochloromethane, are disinfection byproducts. There is no maximum contaminant level for these chemicals at the entry point to distribution.

City of Corpus Christi 2023 Drinking Water Consumer Confidence Report

NAS CC purchases drinking water from the City of Corpus Christi (Public Water System ID# TX1780003). The following pages provide data for contaminants monitored by the City of Corpus Christi.

2023 DRINKING WATER QUALITY REPORT

Our drinking water is regulated by the Texas Commission on Environmental Quality (TCEQ). The information that follows lists all the federally regulated or monitored contaminants which have been found in our drinking water. The data presented in this report is from the most recent testing done in accordance with the regulations.

	INORGANIC CONTAMINANTS											
Year	Constituent (Unit of Measure)	Highest Average	Highest Single Measurement		MCL [AL]	MCLG	Likely Source of Contaminant					
2023	Barium (ppm)	0.118	0.118	NA	2	2	Discharge of drilling waste; discharge from metal refineries; erosion of natural deposits					
2023	Chlorite (ppm)	0.57	0.64	0.24 - 0.64	1.00	0.80	By-product of drinking water disinfection					
2023	Copper (ppm)	0.0105	0.0105	NA	[1.3]	1.3	Corrosion of household plumbing systems; erosion of natural deposits					
2023	Cyanide (ppb)	45*	98	0 - 98	200	200	Discharge from steel/metal factories; discharge from plastic and fertilizer factories					
2023	Fluoride (ppm)	0.34	0.34	NA	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories					
2023	Nitrate (ppm)	1.24	1.24	NA	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits					

*Calculated as a running annual average: the average of four consecutive quarterly averages, which typically include a portion of the previous year's results.

	ORGANIC CONTAMINANTS										
Year	Constituent (Unit of Measure)	Average	Highest Single Measurement	Range	MCL	MCLG	Likely Source of Contaminant				
2023	Atrazine (ppb)	0.13	0.13	NA	3	3	Runoff from herbicide used on row crops				
	DISINFECTION BY-PRODUCTS										
Year	Constituent (Unit of Measure)	Highest Yearly Average	Range	MCL		MCLG	Likely Source of Contaminant				
2023	Total Trihalomethanes (ppb)	41.6	20.8 - 50.9	80		NA	By-product of drinking water disinfection				
2023	Total Haloacetic Acids (ppb)	20.8	7.5 - 27.8	60		NA	By-product of drinking water disinfection				

The locational running annual average (LRAA), presented here as the yearly average, is the average of four consecutive quarterly results for each monitoring location. The LRAA typically includes a portion of the previous year's results. The LRAA is a health concern at levels above the MCL. Some people who drink water containing total trihalomethanes (TTHMs) in excess of the MCL over many years may experience problems with their liver, kidney, or central nervous systems, and may have an increased risk of getting cancer.

	TOTAL ORGANIC CARBON											
Year	Location (Unit of Measure)	Average	Range	Removal Ratio (TT)	MCLG	Likely Source of Contaminant						
2023	Source Water (ppm)	5.72	4.40 - 7.37	NA	NA	Naturally present in the environment						
2023	Plant 1 (ppm)	4.15	2.66 - 5.36	NA	NA	Naturally present in the environment						
2023	Plant 2 (ppm)	4.15	2.66 - 5.36	NA	NA	Naturally present in the environment						
2023	Plant 1 Removal Ratio (% removal**)	1.12	0.71 - 1.65	≥1.0	NA	Naturally present in the environment						
2023	Plant 2 Removal Ratio (% removal**)	1.03	0.71 - 1.65	≥1.0	NA	Naturally present in the environment						

Total Organic Carbon (TOC) has no health effects. The water disinfectant can combine with TOC to form disinfection by-products. Disinfection is necessary to ensure that water does not have unacceptable levels of pathogens. By-products of disinfection include trihalomethanes (THMs) and haloacetic acids (HAA5s) which are reported elsewhere in this report. **Removal ratio is the percent of TOC removed by the treatment process divided by the percent of TOC required by TCEQ to be removed.

	MAXIMUM RESIDUAL DISINFECTANT LEVEL											
Year	Constituent (Unit of Measure)	Highest Average	Range	MRDL	MRDLG	Likely Source of Contaminant						
2023	Chloramines (ppm)	3 . 37	0.07 - 4.39	4	4	Water additive used to control microbes						
2023	Chlorine Dioxide (ppb)	20	0 - 90	800	800	Water additive used to control microbes						
	TURBIDITY											
Year	Location (Unit of Measure)	Highest Single Measurement	Lowest % of Samples Meeting Limits	Entry Point Limit (TT)	Single Measurement Limit (TT)	Likely Source of Contaminant						
2023	Plant 1 (NTU)	0.23	100.0	≤0.3	1.0	Soil runoff						
2023	Plant 2 (NTU)	0.34	100.0	≤0.3	1.0	Soil runoff						

Turbidity has no health effects; however, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that

	CRYPTOSPORIDIUM MONITORING											
Year	Constituent	Average Concentration	Unit of Measurement	MCLG	Likely Source of Contaminant							
2019	Cryptosporidium	0.01	Total (Oo) cysts/L	0	Human and animal fecal waste							

Cryptosporidium is of great concern in public water systems that treat surface water for drinking water sources. Resistant to disinfectants, Cryptosporidium can cause gastrointestinal illness in individuals who consume contaminated water. The Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) is required by Congress in order to increase protection from microbial contaminants such as Cryptosporidium. Under this rule, water systems must conduct monthly source water Cryptosporidium sampling over a two year span. The City of Corpus Christi completed sampling July 2019.

	MICROBIOLOGICAL CONTAMINANTS											
Year	Constituent	Highest Monthly % of Positive Samples	Unit of Measurement	MCL	Likely Source of Contaminant							
2023	Total Coliform Bacteria	0.97	Presence	t	Naturally present in the environment							
Total coli	iform bacteria occur naturally in the enviror	nment and are used as an in	dicator for other, potentially	harmful, bacteria that cou	ld also be present. †Presence of coliform bacteria in 5% or more of the monthly samples.							
Year	Constituent	Total Number of Positive Samples [‡]	Unit of Measurement	MCL	Likely Source of Contaminant							
2023	Fecal Coliform and <i>E. coli</i>	1	Presence	††	Human and animal fecal waste							

Fecal coliform bacteria, in particular, *E. coli*, are members of the coliform bacteria group originating in the intestinal tract of warm-blooded animals and are passed into the environment through feces. The presence of fecal coliform bacteria (*E. coli*) in drinking water may indicate recent contamination of the drinking water with fecal material. Microbes in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, and other symptoms. They may pose a special health risk for infants, young children, elderly, and people with severely compromised immune systems.

**A routine sample and a repeat sample are total coliform positive, and one is also fecal coliform or *E. coli* positive.

**All subsequent samples were not positive for *E. coli* or total coliforms, therefore, no violation occurred.

	LEAD AND COPPER MONITORING RULE										
Year	Constituent (Unit of Measure)	90th Percent		of Sites ding AL	AL	Likely Source of Contaminant					
2023	Lead (ppb)	1.7		0	15.0	Corrosion of household plumbing systems; erosion of natural deposits					
2023	Copper (ppm)	0.033		0	1 . 3	Corrosion of household plumbing systems; erosion of natural deposits					
	RADIOACTIVE CONTAMINANTS										
Year	Constituent (Unit of Measure)	Highest Single Measurement	Range	MCL	MCLG	Likely Source of Contaminant					
2023	Gross Beta Particle Activity (pCi/L)	11.0	NA	50	0	Decay of natural and man-made deposits					
2023	Uranium (ppb)	1.0	NA	30	NA	Erosion of natural deposits					
				UNR	REGULATED COI	NTAMINANTS					
Year	Constituent (Unit of Measure)	Highest Average	Range	MCL	MCLG	Likely Source of Contaminant					
2023	Bromodichloromethane (ppb)	12.3	5.8 - 19.9	NA	NA	By-product of drinking water disinfection					
2023	Bromoform (ppb)	7.9	1.2 - 13.2	NA	NA	By-product of drinking water disinfection					
2023	Chloroform (ppb)	7.8	1.8 - 17.9	NA	NA	By-product of drinking water disinfection					
2023	Dibromochloromethane (ppb)	12.1	5.5 - 14.5	NA	NA	By-product of drinking water disinfection					

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

	UNREGULATED CONTAMINANT MONITORING RULE 5 (UCMR 5)											
Year	Constituent (Unit of Measure)	Average	Range	MRL	Likely Source of Contaminant							
2023	Lithium (ppb)	21.7	18.7 - 26.2	9	Naturally occurring element							
2023	Perfluorobutanoic Acid (ppb)	0.0096	0.0073 - 0.0115	0.005	Breakdown product of per- and polyfluoroalkyl substances in consumer products and industrial applications							
2023	Perfluorohexanoic Acid (ppb)	0.0038	0 - 0.0038	0.003	Breakdown product of per- and polyfluoroalkyl substances in consumer products and industrial applications							
2023	Perfluoropentanoic Acid (ppb)	0.0045	0 - 0.0056	0.003	Breakdown product of per- and polyfluoroalkyl substances in consumer products and industrial applications							
	SECONDARY AND OTHER CONSTITUENTS - NOT ASSOCIATED WITH ADVERSE HEALTH EFFECTS											
Year	Constituent (Unit of Measure)	Highest Average	Range	SMCL	Likely Source of Contaminant							
2023	Aluminum (ppm)	0.167	NA	0.2	Abundant naturally occurring element							
2023	Bicarbonate (ppm)	179	NA	NA	Corrosion of carbonate rocks such as limestone							
2023	Calcium (ppm)	76	66 - 82	NA	Abundant naturally occurring element							
2023	Chloride (ppm)	135	117 - 153	300	Abundant naturally occurring element; used in water purification							
2023	Hardness as CaCO₃ (ppm)	213	180 - 217	NA	Naturally occurring calcium and magnesium							
2023	Magnesium (ppm)	12.9	NA	NA	Abundant naturally occurring element							
2023	Manganese (ppb)	6	1 - 14	50	Naturally occurring element							
2023	Nickel (ppb)	2.1	NA	NA	Erosion of natural deposits							
2023	Potassium (ppm)	9.49	NA	NA	Abundant naturally occurring element							
2023	Sodium (ppm)	91	73 - 108	NA	Erosion of natural deposits; oil field by-product							
2023	Sulfate (ppm)	80	66 - 93	300	Naturally occurring; oil field by-product							
2023	Total Alkalinity (ppm)	143	110 - 147	NA	Naturally occurring soluble mineral salts							

Many constituents found in drinking water can cause taste, color, and odor problems. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document, but they may affect the appearance and taste of your water.

Total dissolved mineral constituents in water

1,000

386 - 593

2023 Total Dissolved Solids (ppm)

2023 DRINKING WATER QUALITY REPORT

Our drinking water is regulated by the Texas Commission on Environmental Quality (TCEQ). The information that follows lists all the federally regulated or monitored contaminants which have been found in our drinking water. The data presented in this report is from the most recent testing done in accordance with the regulations.

	INORGANIC CONTAMINANTS											
Year	Constituent (Unit of Measure)	Highest Average	Highest Single Measurement		MCL [AL]	MCLG	Likely Source of Contaminant					
2023	Barium (ppm)	0.118	0.118	NA	2	2	Discharge of drilling waste; discharge from metal refineries; erosion of natural deposits					
2023	Chlorite (ppm)	0.57	0.64	0.24 - 0.64	1.00	0.80	By-product of drinking water disinfection					
2023	Copper (ppm)	0.0105	0.0105	NA	[1.3]	1.3	Corrosion of household plumbing systems; erosion of natural deposits					
2023	Cyanide (ppb)	45*	98	0 - 98	200	200	Discharge from steel/metal factories; discharge from plastic and fertilizer factories					
2023	Fluoride (ppm)	0.34	0.34	NA	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories					
2023	Nitrate (ppm)	1.24	1.24	NA	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits					

*Calculated as a running annual average: the average of four consecutive quarterly averages, which typically include a portion of the previous year's results.

	ORGANIC CONTAMINANTS										
Year	Constituent (Unit of Measure)	Average	Highest Single Measurement	Range	MCL	MCLG	Likely Source of Contaminant				
2023	Atrazine (ppb)	0.13	0.13	NA	3	3	Runoff from herbicide used on row crops				
	DISINFECTION BY-PRODUCTS										
Year	Constituent (Unit of Measure)	Highest Yearly Average	Range	MCL		MCLG	Likely Source of Contaminant				
2023	Total Trihalomethanes (ppb)	41.6	20.8 - 50.9	80		NA	By-product of drinking water disinfection				
2023	Total Haloacetic Acids (ppb)	20.8	7.5 - 27.8	60		NA	By-product of drinking water disinfection				

The locational running annual average (LRAA), presented here as the yearly average, is the average of four consecutive quarterly results for each monitoring location. The LRAA typically includes a portion of the previous year's results. The LRAA is a health concern at levels above the MCL. Some people who drink water containing total trihalomethanes (TTHMs) in excess of the MCL over many years may experience problems with their liver, kidney, or central nervous systems, and may have an increased risk of getting cancer.

	TOTAL ORGANIC CARBON										
Year	Location (Unit of Measure)	Average	Range	Removal Ratio (TT)	MCLG	Likely Source of Contaminant					
2023	Source Water (ppm)	5.72	4.40 - 7.37	NA	NA	Naturally present in the environment					
2023	Plant 1 (ppm)	4.15	2.66 - 5.36	NA	NA	Naturally present in the environment					
2023	Plant 2 (ppm)	4.15	2.66 - 5.36	NA	NA	Naturally present in the environment					
2023	Plant 1 Removal Ratio (% removal**)	1.12	0.71 - 1.65	≥1.0	NA	Naturally present in the environment					
2023	Plant 2 Removal Ratio (% removal**)	1.03	0.71 - 1.65	≥1.0	NA	Naturally present in the environment					

Total Organic Carbon (TOC) has no health effects. The water disinfectant can combine with TOC to form disinfection by-products. Disinfection is necessary to ensure that water does not have unacceptable levels of pathogens. By-products of disinfection include trihalomethanes (THMs) and haloacetic acids (HAA5s) which are reported elsewhere in this report. **Removal ratio is the percent of TOC removed by the treatment process divided by the percent of TOC required by TCEQ to be removed.

	MAXIMUM RESIDUAL DISINFECTANT LEVEL											
Year	Constituent (Unit of Measure)	Highest Average	Range	MRDL	MRDLG	Likely Source of Contaminant						
2023	Chloramines (ppm)	3 . 37	0.07 - 4.39	4	4	Water additive used to control microbes						
2023	Chlorine Dioxide (ppb)	20	0 - 90	800	800	Water additive used to control microbes						
	TURBIDITY											
Year	Location (Unit of Measure)	Highest Single Measurement	Lowest % of Samples Meeting Limits	Entry Point Limit (TT)	Single Measurement Limit (TT)	Likely Source of Contaminant						
2023	Plant 1 (NTU)	0.23	100.0	≤0.3	1.0	Soil runoff						
2023	Plant 2 (NTU)	0.34	100.0	≤0.3	1.0	Soil runoff						

Turbidity has no health effects; however, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that

	CRYPTOSPORIDIUM MONITORING									
Year	Constituent	Average Concentration	Unit of Measurement	MCLG	Likely Source of Contaminant					
2019	Cryptosporidium	0.01	Total (Oo) cysts/L	0	Human and animal fecal waste					

Cryptosporidium is of great concern in public water systems that treat surface water for drinking water sources. Resistant to disinfectants, Cryptosporidium can cause gastrointestinal illness in individuals who consume contaminated water. The Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) is required by Congress in order to increase protection from microbial contaminants such as Cryptosporidium. Under this rule, water systems must conduct monthly source water Cryptosporidium sampling over a two year span. The City of Corpus Christi completed sampling July 2019.

	MICROBIOLOGICAL CONTAMINANTS											
Year	Constituent	Highest Monthly % of Positive Samples	Unit of Measurement	MCL	Likely Source of Contaminant							
2023	Total Coliform Bacteria	0.97	Presence	t	Naturally present in the environment							
Total coli	iform bacteria occur naturally in the enviror	nment and are used as an in	dicator for other, potentially	harmful, bacteria that cou	ld also be present. †Presence of coliform bacteria in 5% or more of the monthly samples.							
Year	Constituent	Total Number of Positive Samples [‡]	Unit of Measurement	MCL	Likely Source of Contaminant							
2023	Fecal Coliform and <i>E. coli</i>	1	Presence	††	Human and animal fecal waste							

Fecal coliform bacteria, in particular, *E. coli*, are members of the coliform bacteria group originating in the intestinal tract of warm-blooded animals and are passed into the environment through feces. The presence of fecal coliform bacteria (*E. coli*) in drinking water may indicate recent contamination of the drinking water with fecal material. Microbes in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, and other symptoms. They may pose a special health risk for infants, young children, elderly, and people with severely compromised immune systems.

**A routine sample and a repeat sample are total coliform positive, and one is also fecal coliform or *E. coli* positive.

**All subsequent samples were not positive for *E. coli* or total coliforms, therefore, no violation occurred.

	LEAD AND COPPER MONITORING RULE										
Year	Constituent (Unit of Measure)	90th Percent		of Sites ding AL	AL	Likely Source of Contaminant					
2023	Lead (ppb)	1.7		0	15.0	Corrosion of household plumbing systems; erosion of natural deposits					
2023	Copper (ppm)	0.033		0	1 . 3	Corrosion of household plumbing systems; erosion of natural deposits					
	RADIOACTIVE CONTAMINANTS										
Year	Constituent (Unit of Measure)	Highest Single Measurement	Range	MCL	MCLG	Likely Source of Contaminant					
2023	Gross Beta Particle Activity (pCi/L)	11.0	NA	50	0	Decay of natural and man-made deposits					
2023	Uranium (ppb)	1.0	NA	30	NA	Erosion of natural deposits					
				UNR	REGULATED COI	NTAMINANTS					
Year	Constituent (Unit of Measure)	Highest Average	Range	MCL	MCLG	Likely Source of Contaminant					
2023	Bromodichloromethane (ppb)	12.3	5.8 - 19.9	NA	NA	By-product of drinking water disinfection					
2023	Bromoform (ppb)	7.9	1.2 - 13.2	NA	NA	By-product of drinking water disinfection					
2023	Chloroform (ppb)	7.8	1.8 - 17.9	NA	NA	By-product of drinking water disinfection					
2023	Dibromochloromethane (ppb)	12.1	5.5 - 14.5	NA	NA	By-product of drinking water disinfection					

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

	UNREGULATED CONTAMINANT MONITORING RULE 5 (UCMR 5)											
Year	Constituent (Unit of Measure)	Average	Range	MRL	Likely Source of Contaminant							
2023	Lithium (ppb)	21.7	18.7 - 26.2	9	Naturally occurring element							
2023	Perfluorobutanoic Acid (ppb)	0.0096	0.0073 - 0.0115	0.005	Breakdown product of per- and polyfluoroalkyl substances in consumer products and industrial applications							
2023	Perfluorohexanoic Acid (ppb)	0.0038	0 - 0.0038	0.003	Breakdown product of per- and polyfluoroalkyl substances in consumer products and industrial applications							
2023	Perfluoropentanoic Acid (ppb)	0.0045	0 - 0.0056	0.003	Breakdown product of per- and polyfluoroalkyl substances in consumer products and industrial applications							
	SECONDARY AND OTHER CONSTITUENTS - NOT ASSOCIATED WITH ADVERSE HEALTH EFFECTS											
Year	Constituent (Unit of Measure)	Highest Average	Range	SMCL	Likely Source of Contaminant							
2023	Aluminum (ppm)	0.167	NA	0.2	Abundant naturally occurring element							
2023	Bicarbonate (ppm)	179	NA	NA	Corrosion of carbonate rocks such as limestone							
2023	Calcium (ppm)	76	66 - 82	NA	Abundant naturally occurring element							
2023	Chloride (ppm)	135	117 - 153	300	Abundant naturally occurring element; used in water purification							
2023	Hardness as CaCO₃ (ppm)	213	180 - 217	NA	Naturally occurring calcium and magnesium							
2023	Magnesium (ppm)	12.9	NA	NA	Abundant naturally occurring element							
2023	Manganese (ppb)	6	1 - 14	50	Naturally occurring element							
2023	Nickel (ppb)	2.1	NA	NA	Erosion of natural deposits							
2023	Potassium (ppm)	9.49	NA	NA	Abundant naturally occurring element							
2023	Sodium (ppm)	91	73 - 108	NA	Erosion of natural deposits; oil field by-product							
2023	Sulfate (ppm)	80	66 - 93	300	Naturally occurring; oil field by-product							
2023	Total Alkalinity (ppm)	143	110 - 147	NA	Naturally occurring soluble mineral salts							

Many constituents found in drinking water can cause taste, color, and odor problems. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document, but they may affect the appearance and taste of your water.

Total dissolved mineral constituents in water

1,000

386 - 593

2023 Total Dissolved Solids (ppm)